The absolute value functionis a fundamental mathematical concept that... Show more
Sign up to see the contentIt's free!
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Subjects
Careers
178
1
Mira
8/25/2025
Algebra 2
math 3 final exam study guide
1,612
•
Aug 25, 2025
•
The absolute value functionis a fundamental mathematical concept that... Show more
The absolute value function is a fundamental concept in mathematics that creates V-shaped graphs. The absolute value parent function is written as y = |x|, which forms a V-shape centered at the origin. When graphing absolute value functions, understanding transformations is crucial for accurate visualization.
To graph an absolute value function, start by identifying the vertex point (h,k). The vertex represents the turning point of the V-shape, where h indicates horizontal shift and k shows vertical shift. For example, in y = |x - 2| + 3, the vertex is at (2,3). The graph maintains symmetry around a vertical line through the vertex.
Definition: The absolute value function returns the positive distance of a number from zero on a number line, creating a V-shaped graph when plotted.
When working with coefficients in front of x, such as y = 2|x|, the graph becomes steeper (stretched vertically) if the coefficient is greater than 1, and wider (compressed) if the coefficient is less than 1. This understanding is essential for graphing absolute value functions with a number in front of x.
The domain of absolute value function includes all real numbers, while the range starts from the vertex's y-coordinate and extends upward. Students can verify their work using a graphing calculator or Desmos graphing tool, which provides immediate visual feedback.
Direct variation occurs when two quantities change proportionally, expressed by the formula y = kx, where k is the constant of variation. In direct variation examples, if one quantity doubles, the other doubles as well. This relationship creates a straight line through the origin when graphed.
Example: If y varies directly with x and y = 15 when x = 5, then k = 3, making the equation y = 3x. This is one of many direct variation examples with solution.
The direct variation graph always passes through the origin (0,0) and maintains a constant slope determined by k. This distinguishes it from other linear relationships. Students can use a Direct variation calculator to verify relationships and solve problems quickly.
Indirect variation or inverse variation shows an opposite relationship, expressed as y = k/x. As one quantity increases, the other decreases proportionally, creating a hyperbolic curve. This relationship appears frequently in real-world applications like pressure and volume relationships.
Complex numbers combine real and imaginary components in the form a + bi, where i represents the square root of -1. When graphing these numbers, the real part corresponds to the x-axis and the imaginary part to the y-axis, creating a unique coordinate system.
Vocabulary: Complex numbers extend our number system to include solutions to equations like x² + 1 = 0, which have no real solutions.
Polynomial graphing requires understanding end behavior, zeros, and multiplicity. The degree of the polynomial determines its ultimate direction, while zeros (x-intercepts) show where the graph crosses the x-axis. Multiplicity affects how the graph touches or crosses these points.
When graphing polynomials, start by identifying zeros and their multiplicity, then determine end behavior based on the degree and leading coefficient. This systematic approach ensures accurate representation of polynomial functions.
Rational functions, expressed as ratios of polynomials, require careful analysis of asymptotes and holes. Vertical asymptotes occur at values making the denominator zero, while horizontal asymptotes depend on degree relationships between numerator and denominator.
Highlight: When graphing rational functions, always identify asymptotes first, then plot key points to determine the curve's behavior.
The behavior near asymptotes and the presence of holes (removable discontinuities) characterize rational function graphs. Holes occur when factors can be canceled between numerator and denominator, requiring special notation in graphing.
Understanding these advanced functions helps students analyze more complex mathematical relationships and prepare for higher-level mathematics. Practice with various examples and regular use of graphing tools reinforces these concepts effectively.
When working with polynomials, understanding their behavior and characteristics is essential for graphing and solving equations. A polynomial function's degree determines its overall shape and end behavior. The domain of absolute value function concepts apply similarly to polynomials, where we must consider all possible input values.
Definition: A polynomial is an expression with variables and coefficients, where variables can only have whole number exponents. The highest power determines the polynomial's degree.
For complex numbers in the form a + bi, operations follow specific rules. When adding or subtracting complex numbers, we work with real and imaginary parts separately. Multiplication requires careful attention to i² = -1. The absolute value of a complex number |z| = √(a² + b²) represents its distance from the origin on the complex plane.
The end behavior of polynomials depends on both the degree and leading coefficient. For even-degree polynomials with positive leading coefficients, both ends point upward (like the absolute value parent function). Odd-degree polynomials with positive leading coefficients rise on the right and fall on the left. Understanding these patterns helps when graphing equations and analyzing functions.
Understanding transformations is crucial for graphing functions accurately. When working with absolute value function graph or any other function, translations shift the graph horizontally (h) or vertically (k). This connects to concepts used in graphing absolute value functions with a number in front of x.
Example: For f(x) = |x - 2| + 3
- Horizontal shift: 2 units right
- Vertical shift: 3 units up
- Compare to parent function |x|
Function composition occurs when one function's output becomes another's input. This relates to direct variation examples where y = kx shows a direct relationship between variables. The domain of composite functions must be carefully considered to ensure valid inputs throughout the operation.
Inverse functions swap domain and range, creating a reflection over y = x. This concept is particularly important when studying relationships between exponential and logarithmic functions, similar to how direct variation graph shows relationships between variables.
Parabolas can be written in multiple forms, each highlighting different characteristics. The standard form (ax² + bx + c) relates to direct variation examples with solution when a = 0 and we're left with linear relationships. Understanding these connections helps solve real-world problems.
Highlight: The vertex form a(x-h)² + k directly shows:
- Vertex coordinates (h,k)
- Direction of opening (a>0 opens up, a<0 opens down)
- Transformations from parent function
The quadratic formula (-b ± √(b²-4ac))/(2a) provides x-intercepts when they exist. The discriminant (b²-4ac) determines the nature of solutions:
This connects to direct variation questions when analyzing rates of change and relationships between variables.
Factoring techniques are fundamental for solving polynomial equations. Starting with the greatest common factor (GCF), we can then apply specific patterns like difference of squares (a²-b²) or sum/difference of cubes. These skills connect to direct variation formula concepts when simplifying rational expressions.
Vocabulary: Synthetic division is a shortcut method for dividing polynomials by linear factors (x-r), where r is a root of the polynomial.
Long division of polynomials follows similar principles to numeric long division but requires careful attention to terms and degrees. When using Direct variation calculator tools, understanding these underlying concepts helps verify results and understand the process.
The relationship between factors and roots helps analyze polynomial behavior, similar to how 5 examples of direct variation demonstrate proportional relationships in different contexts. This understanding is crucial for graphing and solving polynomial equations.
When working with mathematical expressions, understanding how to handle roots and exponents is crucial for solving complex problems. The fundamental concept of prime factorization helps simplify roots, making calculations more manageable. For instance, when multiplying roots like √a · √b, the result becomes √(ab), following the basic properties of radicals.
Definition: Prime factorization is the process of breaking down a number into its prime factors, which are essential for simplifying radical expressions and working with roots.
Properties of exponents play a vital role in mathematical operations. These properties include combining like terms with exponents, such as am · an = am+n, and understanding that (am)n = amn. When dealing with negative exponents, remember that a-m = 1/am, which is particularly useful when simplifying expressions. Rational exponents introduce a new way to express roots, where a^(m/n) represents the nth root of am.
Example: When solving (√2)³, we can rewrite it as 2^(3/2), which equals 2√2. This demonstrates how rational exponents can simplify complex expressions.
Working with rational inequalities and systems requires a systematic approach. First, eliminate denominators to simplify the expression. Then, solve for the variable while being mindful of extraneous solutions. Domain restrictions are crucial - always check what values the variable cannot equal to maintain valid solutions.
Highlight: When solving rational inequalities, remember to:
Graphing equations and analyzing functions requires understanding various mathematical relationships. The absolute value function graph demonstrates how distance from zero behaves, while the absolute value parent function f(x) = |x| serves as the foundation for more complex absolute value expressions.
Vocabulary: The domain of absolute value function includes all real numbers, making it a versatile tool for modeling real-world situations.
When working with direct variation, the relationship between variables follows the formula y = kx, where k is the constant of variation. Direct variation examples appear in many practical applications, such as:
Example: A direct variation graph always passes through the origin and forms a straight line, demonstrating the proportional relationship between variables.
Using technology like a graphing calculator or Desmos graphing tool can help visualize these relationships. These tools are particularly useful when exploring how to graph absolute value functions with a number in front of x or analyzing transformations of basic functions. The Desmos platform offers interactive features that make it easier to understand how changing parameters affects graph shapes and positions.
Highlight: When using graphing equations calculator tools:
Our AI companion is specifically built for the needs of students. Based on the millions of content pieces we have on the platform we can provide truly meaningful and relevant answers to students. But its not only about answers, the companion is even more about guiding students through their daily learning challenges, with personalised study plans, quizzes or content pieces in the chat and 100% personalisation based on the students skills and developments.
You can download the app in the Google Play Store and in the Apple App Store.
That's right! Enjoy free access to study content, connect with fellow students, and get instant help – all at your fingertips.
App Store
Google Play
The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.
Stefan S
iOS user
This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.
Samantha Klich
Android user
Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.
Anna
iOS user
I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️
Thomas R
iOS user
Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades
Brad T
Android user
Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍
David K
iOS user
The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!
Sudenaz Ocak
Android user
In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.
Greenlight Bonnie
Android user
I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend
Aubrey
iOS user
Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀
Marco B
iOS user
THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮
Elisha
iOS user
This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!
Paul T
iOS user
The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.
Stefan S
iOS user
This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.
Samantha Klich
Android user
Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.
Anna
iOS user
I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️
Thomas R
iOS user
Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades
Brad T
Android user
Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍
David K
iOS user
The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!
Sudenaz Ocak
Android user
In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.
Greenlight Bonnie
Android user
I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend
Aubrey
iOS user
Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀
Marco B
iOS user
THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮
Elisha
iOS user
This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!
Paul T
iOS user
The absolute value function is a fundamental mathematical concept that helps students understand how to work with distances from zero on a number line. When graphing an absolute value function, the result is a V-shaped curve that reflects all... Show more
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
The absolute value function is a fundamental concept in mathematics that creates V-shaped graphs. The absolute value parent function is written as y = |x|, which forms a V-shape centered at the origin. When graphing absolute value functions, understanding transformations is crucial for accurate visualization.
To graph an absolute value function, start by identifying the vertex point (h,k). The vertex represents the turning point of the V-shape, where h indicates horizontal shift and k shows vertical shift. For example, in y = |x - 2| + 3, the vertex is at (2,3). The graph maintains symmetry around a vertical line through the vertex.
Definition: The absolute value function returns the positive distance of a number from zero on a number line, creating a V-shaped graph when plotted.
When working with coefficients in front of x, such as y = 2|x|, the graph becomes steeper (stretched vertically) if the coefficient is greater than 1, and wider (compressed) if the coefficient is less than 1. This understanding is essential for graphing absolute value functions with a number in front of x.
The domain of absolute value function includes all real numbers, while the range starts from the vertex's y-coordinate and extends upward. Students can verify their work using a graphing calculator or Desmos graphing tool, which provides immediate visual feedback.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Direct variation occurs when two quantities change proportionally, expressed by the formula y = kx, where k is the constant of variation. In direct variation examples, if one quantity doubles, the other doubles as well. This relationship creates a straight line through the origin when graphed.
Example: If y varies directly with x and y = 15 when x = 5, then k = 3, making the equation y = 3x. This is one of many direct variation examples with solution.
The direct variation graph always passes through the origin (0,0) and maintains a constant slope determined by k. This distinguishes it from other linear relationships. Students can use a Direct variation calculator to verify relationships and solve problems quickly.
Indirect variation or inverse variation shows an opposite relationship, expressed as y = k/x. As one quantity increases, the other decreases proportionally, creating a hyperbolic curve. This relationship appears frequently in real-world applications like pressure and volume relationships.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Complex numbers combine real and imaginary components in the form a + bi, where i represents the square root of -1. When graphing these numbers, the real part corresponds to the x-axis and the imaginary part to the y-axis, creating a unique coordinate system.
Vocabulary: Complex numbers extend our number system to include solutions to equations like x² + 1 = 0, which have no real solutions.
Polynomial graphing requires understanding end behavior, zeros, and multiplicity. The degree of the polynomial determines its ultimate direction, while zeros (x-intercepts) show where the graph crosses the x-axis. Multiplicity affects how the graph touches or crosses these points.
When graphing polynomials, start by identifying zeros and their multiplicity, then determine end behavior based on the degree and leading coefficient. This systematic approach ensures accurate representation of polynomial functions.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Rational functions, expressed as ratios of polynomials, require careful analysis of asymptotes and holes. Vertical asymptotes occur at values making the denominator zero, while horizontal asymptotes depend on degree relationships between numerator and denominator.
Highlight: When graphing rational functions, always identify asymptotes first, then plot key points to determine the curve's behavior.
The behavior near asymptotes and the presence of holes (removable discontinuities) characterize rational function graphs. Holes occur when factors can be canceled between numerator and denominator, requiring special notation in graphing.
Understanding these advanced functions helps students analyze more complex mathematical relationships and prepare for higher-level mathematics. Practice with various examples and regular use of graphing tools reinforces these concepts effectively.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
When working with polynomials, understanding their behavior and characteristics is essential for graphing and solving equations. A polynomial function's degree determines its overall shape and end behavior. The domain of absolute value function concepts apply similarly to polynomials, where we must consider all possible input values.
Definition: A polynomial is an expression with variables and coefficients, where variables can only have whole number exponents. The highest power determines the polynomial's degree.
For complex numbers in the form a + bi, operations follow specific rules. When adding or subtracting complex numbers, we work with real and imaginary parts separately. Multiplication requires careful attention to i² = -1. The absolute value of a complex number |z| = √(a² + b²) represents its distance from the origin on the complex plane.
The end behavior of polynomials depends on both the degree and leading coefficient. For even-degree polynomials with positive leading coefficients, both ends point upward (like the absolute value parent function). Odd-degree polynomials with positive leading coefficients rise on the right and fall on the left. Understanding these patterns helps when graphing equations and analyzing functions.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Understanding transformations is crucial for graphing functions accurately. When working with absolute value function graph or any other function, translations shift the graph horizontally (h) or vertically (k). This connects to concepts used in graphing absolute value functions with a number in front of x.
Example: For f(x) = |x - 2| + 3
- Horizontal shift: 2 units right
- Vertical shift: 3 units up
- Compare to parent function |x|
Function composition occurs when one function's output becomes another's input. This relates to direct variation examples where y = kx shows a direct relationship between variables. The domain of composite functions must be carefully considered to ensure valid inputs throughout the operation.
Inverse functions swap domain and range, creating a reflection over y = x. This concept is particularly important when studying relationships between exponential and logarithmic functions, similar to how direct variation graph shows relationships between variables.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Parabolas can be written in multiple forms, each highlighting different characteristics. The standard form (ax² + bx + c) relates to direct variation examples with solution when a = 0 and we're left with linear relationships. Understanding these connections helps solve real-world problems.
Highlight: The vertex form a(x-h)² + k directly shows:
- Vertex coordinates (h,k)
- Direction of opening (a>0 opens up, a<0 opens down)
- Transformations from parent function
The quadratic formula (-b ± √(b²-4ac))/(2a) provides x-intercepts when they exist. The discriminant (b²-4ac) determines the nature of solutions:
This connects to direct variation questions when analyzing rates of change and relationships between variables.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Factoring techniques are fundamental for solving polynomial equations. Starting with the greatest common factor (GCF), we can then apply specific patterns like difference of squares (a²-b²) or sum/difference of cubes. These skills connect to direct variation formula concepts when simplifying rational expressions.
Vocabulary: Synthetic division is a shortcut method for dividing polynomials by linear factors (x-r), where r is a root of the polynomial.
Long division of polynomials follows similar principles to numeric long division but requires careful attention to terms and degrees. When using Direct variation calculator tools, understanding these underlying concepts helps verify results and understand the process.
The relationship between factors and roots helps analyze polynomial behavior, similar to how 5 examples of direct variation demonstrate proportional relationships in different contexts. This understanding is crucial for graphing and solving polynomial equations.
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
When working with mathematical expressions, understanding how to handle roots and exponents is crucial for solving complex problems. The fundamental concept of prime factorization helps simplify roots, making calculations more manageable. For instance, when multiplying roots like √a · √b, the result becomes √(ab), following the basic properties of radicals.
Definition: Prime factorization is the process of breaking down a number into its prime factors, which are essential for simplifying radical expressions and working with roots.
Properties of exponents play a vital role in mathematical operations. These properties include combining like terms with exponents, such as am · an = am+n, and understanding that (am)n = amn. When dealing with negative exponents, remember that a-m = 1/am, which is particularly useful when simplifying expressions. Rational exponents introduce a new way to express roots, where a^(m/n) represents the nth root of am.
Example: When solving (√2)³, we can rewrite it as 2^(3/2), which equals 2√2. This demonstrates how rational exponents can simplify complex expressions.
Working with rational inequalities and systems requires a systematic approach. First, eliminate denominators to simplify the expression. Then, solve for the variable while being mindful of extraneous solutions. Domain restrictions are crucial - always check what values the variable cannot equal to maintain valid solutions.
Highlight: When solving rational inequalities, remember to:
Access to all documents
Improve your grades
Join milions of students
By signing up you accept Terms of Service and Privacy Policy
Graphing equations and analyzing functions requires understanding various mathematical relationships. The absolute value function graph demonstrates how distance from zero behaves, while the absolute value parent function f(x) = |x| serves as the foundation for more complex absolute value expressions.
Vocabulary: The domain of absolute value function includes all real numbers, making it a versatile tool for modeling real-world situations.
When working with direct variation, the relationship between variables follows the formula y = kx, where k is the constant of variation. Direct variation examples appear in many practical applications, such as:
Example: A direct variation graph always passes through the origin and forms a straight line, demonstrating the proportional relationship between variables.
Using technology like a graphing calculator or Desmos graphing tool can help visualize these relationships. These tools are particularly useful when exploring how to graph absolute value functions with a number in front of x or analyzing transformations of basic functions. The Desmos platform offers interactive features that make it easier to understand how changing parameters affects graph shapes and positions.
Highlight: When using graphing equations calculator tools:
Our AI companion is specifically built for the needs of students. Based on the millions of content pieces we have on the platform we can provide truly meaningful and relevant answers to students. But its not only about answers, the companion is even more about guiding students through their daily learning challenges, with personalised study plans, quizzes or content pieces in the chat and 100% personalisation based on the students skills and developments.
You can download the app in the Google Play Store and in the Apple App Store.
That's right! Enjoy free access to study content, connect with fellow students, and get instant help – all at your fingertips.
App Store
Google Play
The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.
Stefan S
iOS user
This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.
Samantha Klich
Android user
Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.
Anna
iOS user
I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️
Thomas R
iOS user
Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades
Brad T
Android user
Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍
David K
iOS user
The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!
Sudenaz Ocak
Android user
In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.
Greenlight Bonnie
Android user
I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend
Aubrey
iOS user
Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀
Marco B
iOS user
THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮
Elisha
iOS user
This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!
Paul T
iOS user
The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.
Stefan S
iOS user
This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.
Samantha Klich
Android user
Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.
Anna
iOS user
I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️
Thomas R
iOS user
Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades
Brad T
Android user
Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍
David K
iOS user
The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!
Sudenaz Ocak
Android user
In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.
Greenlight Bonnie
Android user
I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend
Aubrey
iOS user
Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀
Marco B
iOS user
THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮
Elisha
iOS user
This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!
Paul T
iOS user