Open the App

Subjects

95

Dec 5, 2025

16 pages

Introduction to Calculus: Basics Explained

R

Rod Aparejeola

@rodaparej_4woeh

Calculus I is a branch of mathematics that explores continuous... Show more

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
1 / 10
CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Introduction to Differential Calculus

Calculus opens doors to understanding how things change in our world. When you want to analyze the speed of a car, the growth of a population, or the trajectory of a rocket, differential calculus gives you the tools to do it.

This course, taught at Occidental Mindoro State College, focuses on the fundamental concepts that will help you understand how quantities change over time or space.

Pro Tip: Don't be intimidated by calculus! It breaks down complex problems into small, manageable pieces—that's actually where the name comes from, as "calculus" originally meant "small stone" used for counting.

Throughout this course, you'll build skills that are essential for engineering, physics, economics, and many other fields.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

What is Calculus?

Calculus is all about change—how things grow, shrink, or transform over time. Unlike algebra that deals with static equations, calculus helps us understand motion and dynamic systems.

Calculus has two major branches that work together. Differential calculus finds how quickly functions change by calculating derivatives. For example, when you want to know how fast an object is accelerating at a specific moment, you use derivatives.

Integral calculus does the opposite—it finds the original function when you know its rate of change. This is like figuring out how far a car traveled when you only know its speed at different times.

The two branches are connected by the Fundamental Theorem of Calculus, which shows that differentiation and integration are inverse operations—similar to how multiplication and division relate to each other.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Understanding Functions

Functions are the building blocks of calculus. A function is a relationship that assigns exactly one output value to each input value in its domain. Think of a function as a machine that processes inputs and produces predictable outputs.

For example, in the function y = x² + 1, when you input x = 2, you'll always get y = 5. The domain consists of all possible input values where the function can operate.

Function notation gives us a convenient shorthand to work with functions. When we write f(x) = x² + 1, "f" is the function name, "x" is the input (independent variable), and "f(x)" represents the output (dependent variable) that depends on what value of x you use.

Remember: When a relationship doesn't produce exactly one output for each input, it's not a function. For example, y² = x + 1 is not a function because some x-values give two different y-values.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Function Notation and Evaluation

Function notation gives you a powerful way to express mathematical relationships clearly. When you see f(x) = 3x² + 6x - 4, you can read it as "f of x equals 3x-squared plus 6x minus 4."

The beauty of function notation is its flexibility. The same function can be written as g(x), P(x), or w(x)—the name doesn't matter as long as the relationship stays the same. This lets mathematicians work with multiple functions at once without confusion.

Evaluating functions means finding outputs for specific inputs. For instance, to find f(2) when f(x) = 3x² + 6x - 4, you substitute 2 for every x in the equation: f(2) = 3(2)² + 6(2) - 4 = 3(4) + 12 - 4 = 12 + 12 - 4 = 20

Quick Tip: When evaluating complex inputs like fx4x-4 or f5x25x-2, first substitute the entire expression for every x in the function, then simplify. This technique works for any input, whether it's a number, variable, or expression.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Roots of Functions

Finding the roots of a function means discovering where the function equals zero—the x-values that make f(x) = 0. These are crucial points where graphs cross the x-axis and often represent solutions to real-world problems.

When solving for roots, you're essentially finding the values that make the function disappear. For a function like f(x) = x² - 4, you'd set it equal to zero and solve: x² - 4 = 0, which gives x = ±2. These roots tell you the function crosses the x-axis at x = 2 and x = -2.

Different functions require different solving techniques. Quadratic functions like g(y) = 12y² + 11y - 5 can be solved using the quadratic formula, while polynomial functions might need factoring or numerical methods. Rational functions like f(z) = z/z5z-5 - 4/z8z-8 require algebraic manipulation and careful attention to restrictions.

Challenge Yourself: When you encounter a complex function like R(x) = x⁴ + 6x² - 27, try factoring it as x2+9x² + 9x23x² - 3 to find its roots more easily. Practice makes perfect!

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Domain and Range of Functions

The domain of a function is the set of all valid input values xvaluesx-values that the function can accept. Understanding domain helps you avoid mathematical errors like division by zero or taking square roots of negative numbers.

For simple functions like f(x) = 6x - 4, the domain includes all real numbers since you can substitute any value for x. But functions with denominators or square roots have restrictions. For example, in f(x) = x4x-4/x22x15x²-2x-15, you must exclude values that make the denominator zero.

The range is the complete set of output values yvaluesy-values that a function produces. For a function like b(x) = -2x² + 12x + 5, the range is limited because the parabola opens downward, creating a maximum value.

Practical Tip: When finding domain restrictions, look for denominators (exclude values that make them zero) and even roots (exclude values that make expressions under the radical negative). These are the most common domain limitations you'll encounter.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Function Composition

Function composition combines two functions to create a new function where the output of one becomes the input of another. We write this as (f∘g)(x) = f(g(x)), which means "apply g first, then apply f to the result."

Function composition is like a mathematical assembly line. For example, if f(x) = 2x + 1 and g(x) = -2x² + 12x + 5, then (f∘g)(x) = f(g(x)) = 22x2+12x+5-2x² + 12x + 5 + 1 = -4x² + 24x + 11. This creates an entirely new function with its own behavior.

When evaluating compositions at specific values, like (f∘g)(5), you first find g(5), then plug that result into f. This two-step process ensures you're following the correct order of operations.

Remember: Function composition is not commutative, meaning (f∘g)(x) is usually different from (g∘f)(x). Always pay attention to the order in which you apply the functions!

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Inverse Functions

An inverse function undoes what the original function did—it's like pressing "undo" on your calculator. If f takes x and gives y, then f⁻¹ takes y and gives back x. We write the inverse as f⁻¹(x).

You can verify if two functions are inverses by checking if (f∘g)(x) = x and (g∘f)(x) = x. For example, if f(x) = 3x - 2 and g(x) = x+2x+2/3, they're inverses because applying one after the other always gives you back the original input.

To find an inverse function, follow these steps: replace f(x) with y, swap x and y to get x = f(y), solve for y, and then replace y with f⁻¹(x). For example, to find the inverse of f(x) = 3x - 2, write y = 3x - 2, swap to get x = 3y - 2, solve for y to get y = x+2x+2/3, and finally write f⁻¹(x) = x+2x+2/3.

Visual Insight: Inverse functions are reflections of each other across the line y = x. This symmetry means that if the point (a,b) lies on the graph of f, then the point (b,a) lies on the graph of f⁻¹.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Trigonometric Functions

Trigonometric functions relate angles in a right triangle to the ratios of its sides. These functions are fundamental to describing periodic phenomena in physics, engineering, and many natural processes.

The six main trigonometric functions are:

  • sine (sin): opposite side ÷ hypotenuse
  • cosine (cos): adjacent side ÷ hypotenuse
  • tangent (tan): opposite side ÷ adjacent side (or sin ÷ cos)
  • cosecant (csc): hypotenuse ÷ opposite side (or 1 ÷ sin)
  • secant (sec): hypotenuse ÷ adjacent side (or 1 ÷ cos)
  • cotangent (cot): adjacent side ÷ opposite side (or 1 ÷ tan)

The mnemonic SOH CAH TOA helps you remember the three primary functions: Sine = Opposite/Hypotenuse, Cosine = Adjacent/Hypotenuse, Tangent = Opposite/Adjacent.

Application Tip: When solving real-world problems, identifying the right angle and labeling the sides correctly in relation to the angle is crucial for selecting the appropriate trigonometric function.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Trigonometric Identities

Trigonometric identities are equations that are true for all values where the functions are defined. These powerful relationships help simplify complex expressions and solve challenging problems.

The reciprocal identities show the relationships between pairs of functions: sin(θ) = 1/csc(θ), cos(θ) = 1/sec(θ), and tan(θ) = 1/cot(θ). These are useful when converting between different trigonometric expressions.

The Pythagorean identities connect the squared values of functions: sin²(θ) + cos²(θ) = 1 is the most fundamental one. From this, we can derive tan²(θ) + 1 = sec²(θ) and 1 + cot²(θ) = csc²(θ).

Sum and difference formulas like sin(α ± β) = sin(α)cos(β) ± cos(α)sin(β) are essential for breaking down complex angles. These formulas, along with double angle formulas like sin(2θ) = 2sin(θ)cos(θ), help solve problems involving multiple angles.

Strategy Insight: When tackling trigonometric problems, look for ways to use identities to transform expressions into more manageable forms. Often, several approaches are possible—the key is finding the most efficient path to the solution.



We thought you’d never ask...

What is the Knowunity AI companion?

Our AI companion is specifically built for the needs of students. Based on the millions of content pieces we have on the platform we can provide truly meaningful and relevant answers to students. But its not only about answers, the companion is even more about guiding students through their daily learning challenges, with personalised study plans, quizzes or content pieces in the chat and 100% personalisation based on the students skills and developments.

Where can I download the Knowunity app?

You can download the app in the Google Play Store and in the Apple App Store.

Is Knowunity really free of charge?

That's right! Enjoy free access to study content, connect with fellow students, and get instant help – all at your fingertips.

Can't find what you're looking for? Explore other subjects.

Students love us — and so will you.

4.9/5

App Store

4.8/5

Google Play

The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.

Stefan S

iOS user

This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.

Samantha Klich

Android user

Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.

Anna

iOS user

I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️

Thomas R

iOS user

Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades

Brad T

Android user

Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍

David K

iOS user

The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!

Sudenaz Ocak

Android user

In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.

Greenlight Bonnie

Android user

I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend

Aubrey

iOS user

Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀

Marco B

iOS user

THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!

Paul T

iOS user

The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.

Stefan S

iOS user

This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.

Samantha Klich

Android user

Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.

Anna

iOS user

I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️

Thomas R

iOS user

Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades

Brad T

Android user

Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍

David K

iOS user

The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!

Sudenaz Ocak

Android user

In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.

Greenlight Bonnie

Android user

I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend

Aubrey

iOS user

Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀

Marco B

iOS user

THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!

Paul T

iOS user

 

Calculus 1

95

Dec 5, 2025

16 pages

Introduction to Calculus: Basics Explained

R

Rod Aparejeola

@rodaparej_4woeh

Calculus I is a branch of mathematics that explores continuous change and rates of change in functions. It's divided into two main branches: differential calculus, which finds derivatives to measure rates of change, and integral calculus, which does the reverse—finding... Show more

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Introduction to Differential Calculus

Calculus opens doors to understanding how things change in our world. When you want to analyze the speed of a car, the growth of a population, or the trajectory of a rocket, differential calculus gives you the tools to do it.

This course, taught at Occidental Mindoro State College, focuses on the fundamental concepts that will help you understand how quantities change over time or space.

Pro Tip: Don't be intimidated by calculus! It breaks down complex problems into small, manageable pieces—that's actually where the name comes from, as "calculus" originally meant "small stone" used for counting.

Throughout this course, you'll build skills that are essential for engineering, physics, economics, and many other fields.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

What is Calculus?

Calculus is all about change—how things grow, shrink, or transform over time. Unlike algebra that deals with static equations, calculus helps us understand motion and dynamic systems.

Calculus has two major branches that work together. Differential calculus finds how quickly functions change by calculating derivatives. For example, when you want to know how fast an object is accelerating at a specific moment, you use derivatives.

Integral calculus does the opposite—it finds the original function when you know its rate of change. This is like figuring out how far a car traveled when you only know its speed at different times.

The two branches are connected by the Fundamental Theorem of Calculus, which shows that differentiation and integration are inverse operations—similar to how multiplication and division relate to each other.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Understanding Functions

Functions are the building blocks of calculus. A function is a relationship that assigns exactly one output value to each input value in its domain. Think of a function as a machine that processes inputs and produces predictable outputs.

For example, in the function y = x² + 1, when you input x = 2, you'll always get y = 5. The domain consists of all possible input values where the function can operate.

Function notation gives us a convenient shorthand to work with functions. When we write f(x) = x² + 1, "f" is the function name, "x" is the input (independent variable), and "f(x)" represents the output (dependent variable) that depends on what value of x you use.

Remember: When a relationship doesn't produce exactly one output for each input, it's not a function. For example, y² = x + 1 is not a function because some x-values give two different y-values.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Function Notation and Evaluation

Function notation gives you a powerful way to express mathematical relationships clearly. When you see f(x) = 3x² + 6x - 4, you can read it as "f of x equals 3x-squared plus 6x minus 4."

The beauty of function notation is its flexibility. The same function can be written as g(x), P(x), or w(x)—the name doesn't matter as long as the relationship stays the same. This lets mathematicians work with multiple functions at once without confusion.

Evaluating functions means finding outputs for specific inputs. For instance, to find f(2) when f(x) = 3x² + 6x - 4, you substitute 2 for every x in the equation: f(2) = 3(2)² + 6(2) - 4 = 3(4) + 12 - 4 = 12 + 12 - 4 = 20

Quick Tip: When evaluating complex inputs like fx4x-4 or f5x25x-2, first substitute the entire expression for every x in the function, then simplify. This technique works for any input, whether it's a number, variable, or expression.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Roots of Functions

Finding the roots of a function means discovering where the function equals zero—the x-values that make f(x) = 0. These are crucial points where graphs cross the x-axis and often represent solutions to real-world problems.

When solving for roots, you're essentially finding the values that make the function disappear. For a function like f(x) = x² - 4, you'd set it equal to zero and solve: x² - 4 = 0, which gives x = ±2. These roots tell you the function crosses the x-axis at x = 2 and x = -2.

Different functions require different solving techniques. Quadratic functions like g(y) = 12y² + 11y - 5 can be solved using the quadratic formula, while polynomial functions might need factoring or numerical methods. Rational functions like f(z) = z/z5z-5 - 4/z8z-8 require algebraic manipulation and careful attention to restrictions.

Challenge Yourself: When you encounter a complex function like R(x) = x⁴ + 6x² - 27, try factoring it as x2+9x² + 9x23x² - 3 to find its roots more easily. Practice makes perfect!

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Domain and Range of Functions

The domain of a function is the set of all valid input values xvaluesx-values that the function can accept. Understanding domain helps you avoid mathematical errors like division by zero or taking square roots of negative numbers.

For simple functions like f(x) = 6x - 4, the domain includes all real numbers since you can substitute any value for x. But functions with denominators or square roots have restrictions. For example, in f(x) = x4x-4/x22x15x²-2x-15, you must exclude values that make the denominator zero.

The range is the complete set of output values yvaluesy-values that a function produces. For a function like b(x) = -2x² + 12x + 5, the range is limited because the parabola opens downward, creating a maximum value.

Practical Tip: When finding domain restrictions, look for denominators (exclude values that make them zero) and even roots (exclude values that make expressions under the radical negative). These are the most common domain limitations you'll encounter.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Function Composition

Function composition combines two functions to create a new function where the output of one becomes the input of another. We write this as (f∘g)(x) = f(g(x)), which means "apply g first, then apply f to the result."

Function composition is like a mathematical assembly line. For example, if f(x) = 2x + 1 and g(x) = -2x² + 12x + 5, then (f∘g)(x) = f(g(x)) = 22x2+12x+5-2x² + 12x + 5 + 1 = -4x² + 24x + 11. This creates an entirely new function with its own behavior.

When evaluating compositions at specific values, like (f∘g)(5), you first find g(5), then plug that result into f. This two-step process ensures you're following the correct order of operations.

Remember: Function composition is not commutative, meaning (f∘g)(x) is usually different from (g∘f)(x). Always pay attention to the order in which you apply the functions!

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Inverse Functions

An inverse function undoes what the original function did—it's like pressing "undo" on your calculator. If f takes x and gives y, then f⁻¹ takes y and gives back x. We write the inverse as f⁻¹(x).

You can verify if two functions are inverses by checking if (f∘g)(x) = x and (g∘f)(x) = x. For example, if f(x) = 3x - 2 and g(x) = x+2x+2/3, they're inverses because applying one after the other always gives you back the original input.

To find an inverse function, follow these steps: replace f(x) with y, swap x and y to get x = f(y), solve for y, and then replace y with f⁻¹(x). For example, to find the inverse of f(x) = 3x - 2, write y = 3x - 2, swap to get x = 3y - 2, solve for y to get y = x+2x+2/3, and finally write f⁻¹(x) = x+2x+2/3.

Visual Insight: Inverse functions are reflections of each other across the line y = x. This symmetry means that if the point (a,b) lies on the graph of f, then the point (b,a) lies on the graph of f⁻¹.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Trigonometric Functions

Trigonometric functions relate angles in a right triangle to the ratios of its sides. These functions are fundamental to describing periodic phenomena in physics, engineering, and many natural processes.

The six main trigonometric functions are:

  • sine (sin): opposite side ÷ hypotenuse
  • cosine (cos): adjacent side ÷ hypotenuse
  • tangent (tan): opposite side ÷ adjacent side (or sin ÷ cos)
  • cosecant (csc): hypotenuse ÷ opposite side (or 1 ÷ sin)
  • secant (sec): hypotenuse ÷ adjacent side (or 1 ÷ cos)
  • cotangent (cot): adjacent side ÷ opposite side (or 1 ÷ tan)

The mnemonic SOH CAH TOA helps you remember the three primary functions: Sine = Opposite/Hypotenuse, Cosine = Adjacent/Hypotenuse, Tangent = Opposite/Adjacent.

Application Tip: When solving real-world problems, identifying the right angle and labeling the sides correctly in relation to the angle is crucial for selecting the appropriate trigonometric function.

CALCULUS I –
DIFFERENTIAL CALCULUS
Engr. Krizel Villanueva
OCCIDENTAL MINDORO STATE COLLEGE
Barangay Labangan, San Jose, Occidental
College

Sign up to see the contentIt's free!

Access to all documents

Improve your grades

Join milions of students

By signing up you accept Terms of Service and Privacy Policy

Trigonometric Identities

Trigonometric identities are equations that are true for all values where the functions are defined. These powerful relationships help simplify complex expressions and solve challenging problems.

The reciprocal identities show the relationships between pairs of functions: sin(θ) = 1/csc(θ), cos(θ) = 1/sec(θ), and tan(θ) = 1/cot(θ). These are useful when converting between different trigonometric expressions.

The Pythagorean identities connect the squared values of functions: sin²(θ) + cos²(θ) = 1 is the most fundamental one. From this, we can derive tan²(θ) + 1 = sec²(θ) and 1 + cot²(θ) = csc²(θ).

Sum and difference formulas like sin(α ± β) = sin(α)cos(β) ± cos(α)sin(β) are essential for breaking down complex angles. These formulas, along with double angle formulas like sin(2θ) = 2sin(θ)cos(θ), help solve problems involving multiple angles.

Strategy Insight: When tackling trigonometric problems, look for ways to use identities to transform expressions into more manageable forms. Often, several approaches are possible—the key is finding the most efficient path to the solution.

We thought you’d never ask...

What is the Knowunity AI companion?

Our AI companion is specifically built for the needs of students. Based on the millions of content pieces we have on the platform we can provide truly meaningful and relevant answers to students. But its not only about answers, the companion is even more about guiding students through their daily learning challenges, with personalised study plans, quizzes or content pieces in the chat and 100% personalisation based on the students skills and developments.

Where can I download the Knowunity app?

You can download the app in the Google Play Store and in the Apple App Store.

Is Knowunity really free of charge?

That's right! Enjoy free access to study content, connect with fellow students, and get instant help – all at your fingertips.

1

Smart Tools NEW

Transform this note into: ✓ 50+ Practice Questions ✓ Interactive Flashcards ✓ Full Mock Exam ✓ Essay Outlines

Mock Exam
Quiz
Flashcards
Essay

Can't find what you're looking for? Explore other subjects.

Students love us — and so will you.

4.9/5

App Store

4.8/5

Google Play

The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.

Stefan S

iOS user

This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.

Samantha Klich

Android user

Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.

Anna

iOS user

I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️

Thomas R

iOS user

Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades

Brad T

Android user

Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍

David K

iOS user

The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!

Sudenaz Ocak

Android user

In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.

Greenlight Bonnie

Android user

I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend

Aubrey

iOS user

Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀

Marco B

iOS user

THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!

Paul T

iOS user

The app is very easy to use and well designed. I have found everything I was looking for so far and have been able to learn a lot from the presentations! I will definitely use the app for a class assignment! And of course it also helps a lot as an inspiration.

Stefan S

iOS user

This app is really great. There are so many study notes and help [...]. My problem subject is French, for example, and the app has so many options for help. Thanks to this app, I have improved my French. I would recommend it to anyone.

Samantha Klich

Android user

Wow, I am really amazed. I just tried the app because I've seen it advertised many times and was absolutely stunned. This app is THE HELP you want for school and above all, it offers so many things, such as workouts and fact sheets, which have been VERY helpful to me personally.

Anna

iOS user

I think it’s very much worth it and you’ll end up using it a lot once you get the hang of it and even after looking at others notes you can still ask your Artificial intelligence buddy the question and ask to simplify it if you still don’t get it!!! In the end I think it’s worth it 😊👍 ⚠️Also DID I MENTION ITS FREEE YOU DON’T HAVE TO PAY FOR ANYTHING AND STILL GET YOUR GRADES IN PERFECTLY❗️❗️⚠️

Thomas R

iOS user

Knowunity is the BEST app I’ve used in a minute. This is not an ai review or anything this is genuinely coming from a 7th grade student (I know 2011 im young) but dude this app is a 10/10 i have maintained a 3.8 gpa and have plenty of time for gaming. I love it and my mom is just happy I got good grades

Brad T

Android user

Not only did it help me find the answer but it also showed me alternative ways to solve it. I was horrible in math and science but now I have an a in both subjects. Thanks for the help🤍🤍

David K

iOS user

The app's just great! All I have to do is enter the topic in the search bar and I get the response real fast. I don't have to watch 10 YouTube videos to understand something, so I'm saving my time. Highly recommended!

Sudenaz Ocak

Android user

In school I was really bad at maths but thanks to the app, I am doing better now. I am so grateful that you made the app.

Greenlight Bonnie

Android user

I found this app a couple years ago and it has only gotten better since then. I really love it because it can help with written questions and photo questions. Also, it can find study guides that other people have made as well as flashcard sets and practice tests. The free version is also amazing for students who might not be able to afford it. Would 100% recommend

Aubrey

iOS user

Best app if you're in Highschool or Junior high. I have been using this app for 2 school years and it's the best, it's good if you don't have anyone to help you with school work.😋🩷🎀

Marco B

iOS user

THE QUIZES AND FLASHCARDS ARE SO USEFUL AND I LOVE THE SCHOOLGPT. IT ALSO IS LITREALLY LIKE CHATGPT BUT SMARTER!! HELPED ME WITH MY MASCARA PROBLEMS TOO!! AS WELL AS MY REAL SUBJECTS ! DUHHH 😍😁😲🤑💗✨🎀😮

Elisha

iOS user

This app is phenomenal down to the correct info and the various topics you can study! I greatly recommend it for people who struggle with procrastination and those who need homework help. It has been perfectly accurate for world 1 history as far as I’ve seen! Geometry too!

Paul T

iOS user